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Abstract: Models, mathematical or stochastic, which move from one functional form to another through pathway parameters, so that
in between stages can be captured, are examined in this article. Models which move from generalized type-1 beta family to type-2
beta family, to generalized gamma family to generalized Mittag-Leffler family to Lévy distributions are examined here. It is known
that one can likely find an approximate model for the data at hand whether the data are coming from biological, physical, engineering,
social sciences or other areas. Different families of functions are connected through the pathway parameters and hence one will find a
suitable member from within one of the families or in between stages of two families. Graphs are provided to show the movement of
the different models showing thicker tails, thinner tails, right tail cut off etc.
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1. Introduction

When fitting a mathematical model for data coming from
physical, social and engineering sciences one often picks
a possible function from a family of functions such as a
gamma family for positive observations. In this case the
selected function is

f1(x) = c1x
α−1e−x/β , x ≥ 0, α > 0, β > 0. (1.1)

In some situations there may be a right tail or the right tail
is cut off or the data can never be higher than a thresh-
old number. In that case one often looks into a generalized
type-1 beta family of functions such as

f2(x) = c2x
α−1[1 − axδ]γ , 0 ≤ x ≤ a−1/δ, a > 0,

α > 0, δ > 0, γ > 0. (1.2)

where a−1/δ will determine the threshold number. Then
the fitting is done by selecting the parameters α, a, δ, γ.
But there may be a situation where the underlying model
may be in between f1(x) and f2(x). In some physical sit-
uations the stable situation may be an exponential form
such as a special case of (1.1), or a Maxwell-Boltzmann
distribution, which is a special case of (1.1), may be the

stable situation. The data at hand may be describing some
disturbance from this stable situation or in a neighborhood
or path leading to the stable situation. In order to cover the
stable as well as the transitional stages a pathway model
was introduced by Mathai (2005). The model introduced
therein is for a pathway describing transitions of rectan-
gular matrix-variate distributions in the real case and the
corresponding pathway model in the complex domain was
given in Mathai and Provost (2007). The pathway model
for the real positive scalar case is the following:

f3(x) = c3x
α−1[1 − (1 − q)axδ]η/(1−q), a > 0,

δ > 0, η > 0, 1 − (1 − q)axδ > 0. (1.3)

Observe that (1.3) for q < 1 stays in the generalized type-
1 beta family of densities. When q > 1, writing 1 − q =
−(q − 1) we have

f4(x) = c4x
α−1[1 + (q − 1)axδ]−η/(q−1),

q > 1, a > 0, δ > 0, η > 0, x ≥ 0. (1.4)

The function f4(x) is the generalized type-2 beta family
of densities. Now, let us see what happens when q → 1,
from the left or from the right.

limq→1+f4(x) = limq→1−f3(x) = f5(x)
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where
f5(x) = c5x

α−1e−aηxδ

, x ≥ 0, a > 0, η > 0, δ > 0. (1.5)

That is, f3(x) and f4(x) go to f5(x), which is the generalized gamma family. Thus, if f5(x) or its particular case is the
stable density in a physical system then unstable neighborhoods or paths leading to f5(x) are described by f3(x) and
f4(x). Then q there can be called the pathway parameter connecting the three functional forms f3(x), f4(x) and f5(x).

1.1. The normalizing constants

The normalizing constants c3, c4 and c5 can be computed by making the substitutions u = (1−q)axδ, v = (q−1)axδ, ω =
aηxδ and then making use of the type-1 beta, type-2 beta and gamma integrals respectively. The final results are the
following:

c3 =
δΓ [α/δ + η/(1 − q) + 1][a(1 − q)](α/δ)

Γ (α/δ)Γ [η/(1 − q) + 1]
, (1.6)

q < 1, R(α) > 0, δ > 0, η > 0, a > 0

.

c4 =
δΓ [η/(q − 1)][a(q − 1)]α/δ

Γ (α/δ)Γ [η/(q − 1) − α/δ]
, (1.7)

q > 1, R(α) > 0, δ > 0, η > 0, a > 0, R[η/(q − 1) − α/δ] > 0

c5 =
δ(aη)α/δ

Γ (α/δ)
, R(α) > 0, δ > 0, η > 0, a > 0, (1.8)

where R(·) denotes the real part of (·). In model building situations, usually all the parameters are real.

1.2. Graphs of the pathway model

The graphs of f3, f4, and f5 illustrate the versatility of the models and the fact that, as the parameter q approaches 1 from
the left or from the right the limiting forms of the densities f3 and f4 are indeed f5 (see attached).

2. The Pathway Idea

The mathematical property of (1.3) and (1.4) going to (1.5) is a technique in the theory of special functions. When
δ = 1 the functions in (1.3) and (1,4), excluding xα−1 are binomial functions or in the language of hypergeometric
functions they are 1F0 functions. But f5(x) for δ = 1 and excluding xα−1, is the exponential function 0F0. Hence the
transition is the case of 1F0 going to 0F0. The technique of getting rid off parameters from a hypergeometric function
is an age-old technique. This technique was successfully adapted by Mathai in the 1970’s for population studies and
it was introduced and elaborated in Mathai (2005) due to the emergence of the new branch of non-extensive statistical
mechanics, initiated by Tsiallis (1988). The mathematical technique behind this whole branch is 1F0 going to 0F0 in the
language of hypergeometric functions. The formulation of Tsallis (1988) is in the form of generalized entropy, which is
one of the α− generalized entropies discussed in Mathai and Rathie (1975). It is shown in Mathai and Haubold (2007)
that there can be entropic, distributional or differential pathways, or the same idea can be elucidated in terms of entropies
or information measures or statistical distributions or differential equations. These are the three types of pathways for the
same idea.

2.1. Tsallis’ Statistics, Superstatistics and Mittag-Leffler Distributions

During the past ten years there have been invigorated activities in the area of astrophysics claiming that Tsallis’ statis-
tics can describe most of physical situations or Tsallis’ model can describe most physical situations deviating from the
Maxwell-Boltzman stable distribution, thus extending statistical mechanics beyond Boltzman and Gibbs. Another claim
is made in introducing what is known as super-statistics by Beck and Cohen (2003) and Beck (2006) that super-statistics
is the right candidate to describe deviations from Maxwell-Boltzman distribution. It is pointed out in Mathai and Haubold
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Figure 1 The graphs of f3(x), f4(x) and f5(x). The values of the parameters are: a = 1, α = 2, δ = 1, η = 3

(2007) that from a statistical point of view super-statistics is nothing but the unconditional distribution in Bayesian statis-
tical analysis when the conditional density and the prior density both belong to generalized gamma densities of the form
(1.5). Further, that Tsallis’ statistics can describe more situations than the ones covered by super-statistics. Seybold et al.
(2005) made a comparison of the various models, with reference to astrophysics problems, and came to the conclusion that
a Mittag-Leffler model may be a better candidate compared to Tsallis’ statistics, super-statistics and stretched exponential.
Mittag-Leffler fits in nicely in many types of data. A recent survey on Mittag-Leffler function, Mittag-Leffler density, their
properties and applications, is done by Haubold, Mathai and Saxena (2009). Mittag-Leffler function is a particular case
of Wright function which is a particular case of the H-function. The theory and applications of H-function may be seen
from the recent books Mathai and Haubold (2008) and Mathai, Saxena and Haubold (2009).
The pathway idea will be illustrated here in terms of a particular case of the H-function. This aspect is not examined by
anyone so far. Let us take an 1F1-type particular case of an H-function. Consider the standard notation of an H-function

H1,1
1,2 [x |(1−a,α)

(0,1),(1−b,β)] =
1

2πi

∫ c+i∞

c−i∞

Γ (s)Γ (a − αs)
Γ (b − βs)

x−sds (2.1)

=
∞∑

k=0

Γ (a + αk)
Γ (b + βk)

(−x)k

k!
(2.2)

where i =
√−1, α > 0, β > 0 are real; a,b are complex numbers, c is real and 0 < c < R(a/α), a, b �= 0,−1,−2, ...

where R(·) denotes the real part of (·). Consider

Γ (b)
Γ (a)

H1,1
1,2 [x |(1−a,α)

(0,1),(1−b,β)]

and let |a| → ∞. Then by using Stirling’s approximation for the gamma function, namely,

Γ (z + c) ≈
√

2πzz+c−1/2e−z (2.3)

for |z| → ∞ and c a bounded quantity, we have

Γ (a − αs)
Γ (a)

aαs ≈
√

2πaa−αs−1/2e−aaαs

√
2πaa−1/2e−a

= 1. (2.4)
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Therefore

lima→∞
Γ (b)
Γ (a)

H1,1
1,2 [

x

aα
|(1−a,α)
(0,1),(1−b,β)] = Γ (b)H1,0

0,2 [x | (0, 1), (1 − b, β)]

= Γ (b)
∞∑

k=0

xk

k!Γ (b + βk)
= Γ (b)Eβ,b(−x) (2.5)

where Eβ,b(x) is the Mittag-Lefler function. When α = 1, (2.2) reduces to

Γ (b)
Γ (a)

∞∑
k=0

Γ (a + k)
Γ (b + βk)

(−x)k

k!
= Γ (b)

∞∑
k=0

(a)k

Γ (b + βk)
(−x)k

k!
= Γ (b)Ea

β,b(−x) (2.6)

where (a)k is the Pochhammer symbol (a)k = a(a+1) · · · (a+k−1), (a)0 = 1, a �= 0 where Ea
β,b(−x) is the generalized

Mittag-Leffler function. When a = 1, we have E1
β,b(−x) = Eβ,b(−x).

E1
β,1(−x) = Eβ,1(−x) = Eβ(−x) (2.7)

where Eβ(x), Eβ,b(x), Ea
β,b(x) are various forms of the Mittag-Leffler function and these are particular cases of a

Wright’s function

pΨq(a1, . . . , ap; b1, . . . , bq;x) =
∞∑

k=0

Γ (a1 + k) · · ·Γ (ap + k)
Γ (b1 + k) · · ·Γ (bq + k)

xk

k!
. (2.8)

2.2. Movement towards Tsallis’ Statistics and Superstatistics

In (2.5) we have considered the case of getting rid off an upper parameter from an H-function. Suppose we want to get rid
of the denominator gamma from (2.1). Going through parallel steps we see that

limb→∞
Γ (b)
Γ (a)

Γ (s)Γ (a − αs)
Γ (b − βs)

(bβx)−s =
1

Γ (a)
Γ (s)Γ (a − αs)x−s. (2.9)

Then the function reduces to

1
Γ (a)

1
2πi

∫ c+i∞

c−i∞
Γ (s)Γ (a − αs)x−sds =

1
Γ (a)

∞∑
k=0

Γ (a + αk)
(−x)k

k!
. (2.10)

For α = 1 this is the binomial series
∞∑

k=0

(a)k

k!
(−x)k = (1 + x)−a, | x |< 1. (2.11)

When x is replaced by (q − 1)x and a is replaced by (q − 1)−1 one has Tsallis’ statistics. Under these replacements for
q > 1 and when (2.11) is multiplied by a factor xγ one has the super-statistics of Beck and Cohen (2003). Here one may
also replace x by xδ to give other forms of super-statistics. Thus when we get rid off the numerator gamma from the
H-function in (2.1) we end up in the very particular Mittag-Leffler function. When we get rid off the denominator gamma
in (2.1) we end up in Tsallis’ statistics, super-statistics, and particular cases of the pathway model in Mathai (2005).

These various forms of the Mittag-Leffler functions appear naturally in the solutions of fractional order differential
equations. For example to a simple integer order differential equation

df(x)
dx

= −ρf(x) ⇒ f(x) = f0e
−ρx, (2.12)

the solution is the exponential function, while to a fractional order differential or integral equation

f(x) − c = 0D
−α
x f(t), c = constant, (2.13)

the solution is available in terms of a Mittag-Leffler function, where the left-sided Riemann-Liouville fractional integral
is defined as

0D
−α
x f(t) =

1
Γ (α)

∫ x

0

(x − t)α−1f(t)dt,R(α) > 0. (2.14)

A large number of applications of fractional calculus to reaction rate theory, diffusion and reaction-diffusion problems
are given in a series of papers by Haubold, Mathai and Saxena, a summary of which is available in Mathai and Haubold
(2008).
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3. Mittag-Leffler Density

Let us consider a function f(x) associated with the Mittag-Leffler function. Let, for β > 0 real, a, b �= 0,−1,−2, ...

f(x) =
Γ (b)
Γ (a)

∞∑
k=0

Γ (a + k)
Γ (b + βk)

(−xβ)k

k!
xb−1 (3.1)

and let us consider the Laplace transform Lf (t), where

Lf (t) =
∫ ∞

0

e−txf(x)dx =
Γ (b)
Γ (a)

∞∑
k=0

Γ (a + k)
Γ (b + βk)

(−1)k

k!

∫ ∞

0

xb+βk−1e−txdx

=
Γ (b)
Γ (a)

∞∑
k=0

Γ (a + k)
(−1)k

k!
t−b−βk (3.2)

= Γ (b)
∞∑

k=0

(a)k
(−1)k

k!
t−b−βk = Γ (b)t−b[1 + t−β ]−afor|t−β | < 1

= Γ (b)t−b+aβ(1 + tβ)−a = Γ (b)(1 + tβ)−a (3.3)
for b = aβ. Observe that the integration inside the series is valid in (3.1) Thus for b = aβ

f(x) =
1

Γ (a)
xaβ−1

∞∑
k=0

Γ (a + k)
Γ (aβ + kβ)

(−xβ)k

k!
. (3.4)

The series can be represented in terms of a Mellin-Barnes representation. That is

f(x) =
1

Γ (a)
xaβ−1 1

2πi

∫ c+i∞

c−i∞

Γ (s)Γ (a − s)
Γ (aβ − βs)

x−βsds. (3.5)

Let us make a change of variable. let
aβ − 1 − sβ = −s1 ⇒ s = a − 1/β + s1/β.

Under the transformation we may rewrite (3.5) as follows:

f(x) =
1

Γ (a)
1

2πi

∫ c1+i∞

c1−i∞

Γ (a − 1/β + s1/β)Γ (1/β − s1/β)
βΓ (1 − s1)

x−s1ds1

=
1

Γ (a)
1

2πi

∫ c1+i∞

c1−i∞

Γ (a − 1/β + s1/β)Γ (1 + 1/β − s1/β)
Γ (2 − s1)

x−s1ds1 (3.6)

for −R(aβ) < R(s) < R(β) < 1. Since (3.6) can be looked upon as an inverse Mellin transform we have∫ ∞

0

xs−1f(x)dx =
Γ (a − 1/β + s/β)Γ (1 + 1/β − s/β)

Γ (a)Γ (2 − s)
= 1 for s = 1. (3.7)

Since f(x) ≥ 0 for all x and since
∫ ∞
0

x0f(x)dx =
∫ ∞
0

f(x)dx = 1 this f(x) is a density. Hence the expected value of
xs−1 for this density, that is,

E(xs−1) =
Γ (a − 1/β + s/β)Γ (1 + 1/β − s/β)

Γ (a)Γ (2 − s)
,−R(aβ) < R(s) < β < 1. (3.8)

Thus, the Mittag-Leffler density is given by

f(x) =
xaβ−1

Γ (a)

∞∑
k=0

Γ (a + k)
Γ (aβ + βk)

(−xβ)k

k!
(3.9)

= xaβ−1
∞∑

k=0

(a)k

Γ (aβ + βk)
(−xβ)k

k!
, β > 0, a > 0, x ≥ 0. (3.10)

One can even have a scaling factor for x. In this case f(x) will become

g(x) =
xaβ−1

δa

∞∑
k=0

(a)k

k!
(−xβ)k

δkΓ (aβ + βk)
, 0 ≤ x < ∞, δ > 0, β > 0, a > 0. (3.11)
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3.1. Limiting Form of the Mittag-Leffler Density

Following through the earlier steps we can compute the Laplace transform of the density in (3.11),

Lg(t) = [1 + δtβ ]−α (3.12)

If x1, . . . , xn are independent and identically distributed Mittag-Leffler random variables with the density as in (3.11),
then for the Laplace transform of the sum x = x1 + · · · + xn denoting it by Lx(t), we have

Lx(t) = [1 + δtβ ]−na, (3.13)

which shows that x is again a Mittag-Leffler variable, which also indicates that the Mittag-Leffler variable is infinitley
divisible. In (3.12) if δ is replaced by q − 1 and a by (q − 1)−1, q > 1 and then take the limit as q → 1+ then we have,

limq→1+Lg(t) = limq→1+ [1 + (q − 1)tβ ]−
1

q−1 = e−tβ

(3.14)

which is the Laplace transform of the Lévy distribution. Thus, one interesting aspect is that the Mittag-Leffler density, in
the general form, goes to the Lévy density. The path here leads to a thick-tailed Lévy density rather than the generalized
gamma density. The Mittag-Leffler density in its simplest form is available for δ = 1, a = 1 in (3.11). The Lévy density
and Linnik density are very often used to describe non-Gaussian stochastic processes and non-Gaussian time series.
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